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multiplicity problem for compact semisimple Lie groups: 
I. General formalism 
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$ School of Chemistry, University of Western Australia, Nedlands, Western Australia 6009, 
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Received 23 August 1985 

Abstract. We describe a method, analogous to the Elliott method for O(3) c U(3), for 
resolution of the multiplicity in the decomposition into irreducibles of the tensor product 
of two irreducible representations of a compact semisimple Lie group G. The method is 
based on a decomposition of highest weight vectors in the product representation into 
direct product states, focusing on components of the form e O e $  with e a weight vector 
and e: a highest weight vector. The weight of the vector e corresponds to the ‘shift’ weight 
in a tensor operator formulation of the problem. We use a result from an earlier paper, 
based on the fact that a tensor product representation can be generated cyclically from 
the product of a highest and a lowest weight vector, to give an explicit characterisation of 
the space of shift weight vectors e that can appear in the decomposition of a highest weight 
state. This characterisation is in terms of lowering operators in the complexified Lie algebra 
L of G, and closely parallels Verma’s well known enveloping algebra characterisation of 
the highest weight states of finite-dimensional irreducible representations of complex 
semisimple Lie algebras. The result enables the problem of determining the multiplicity 
structure of tensor product representations to be recast as a much simpler problem of 
spectral analysis of weight spaces of irreducible representations under sI(2) subalgebras 
of L. We pursue some implications of the method for the explicit computation of Wigner 
coefficients, and show that the matrix elements of the relevant projection operators can be 
expressed as ratios of polynomial functions of known degree in the highest weight com- 
ponents. Two following papers give an applicdtion of the method to U( n )  and describe 
its properties in the asymptotic (classical) limit of large quantum numbers, which parallel 
the asymptotic properties of Elliott’s scheme for the O(3) e U(3) problem. 

1. Introduction 

The definition and computation of the Wigner coefficients for the unitary, orthogonal, 
symplectic and other compact semisimple Lie groups is well known to be a complex 
problem because of the multiplicity of irreducible subrepresentations occurring in the 
decomposition of tensor products. Although the multiplicity in representations with 
low quantum numbers can usually be resolved on a case by case basis by introducing 
additional Hermitian labelling invariants or some form of projection, in the longer 
term it is essential to develop more general labelling and computational procedures 
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which exploit the structure of the group itself. General procedures of this kind have 
been specified by Biedenharn, Louck and co-authors (Lohe et a1 1977 and earlier 
papers) for the cases of U(3) and the adjoint representations of arbitrary U(n).  

In the case of the well studied embedding O(3) c U(3), one of the simplest to 
exhibit a multiplicity problem, a variety of effective general labelling schemes is 
available, of which the earliest, due to Elliott (1958), is known to have a natural 
physical interpretation in the classical (large quantum number) limit. In this paper 
we describe a method for resolving the multiplicity in tensor product representations 
using an approach similar in spirit to the Elliott scheme. The multiplicity-resolved 
states are defined by projection from a specific set of simple product states whose 
behaviour under projection can be characterised straightforwardly in terms of the 
action of the lowering operators in the group’s Lie algebra. In the Elliott scheme, 
projection is from a highest weight state for U(3), while in this paper we resolve tensor 
product multiplicities by projection from states of the form e @  e? where e? is a highest 
weight vector. The behaviour of these states under projection is amenable to detailed 
characterisation for the following reasons. 

Let V(A) and V ( p )  be irreducible modules carrying representations of a compact 
semisimple Lie group G. Let the distinct weights occurring in V(A) be A, ,  A2,  . . . , A,, 
and suppose that the numbering respects the partial order on the set of weights induced 
by the positive roots, i.e. A i >  Aj  iff i>j. A ,  is thus the lowest weight in V(A) and A, 
the highest. Denote the subspace of V(A) of vectors of weight A i  by & ( A ) .  It is well 
known that in decomposing the tensor product module V(A)O V ( p )  the multiplicity 
with which the irreducible component of highest weight Ai + p occurs cannot exceed 
the dimension of Vi(A) .  As shown in a previous paper (Gould and Edwards 1984), 
this result can be greatly sharpened: for each highest weight, we can define an explicit 
subspace of V , ( A ) ,  denoted V,+(A) ,  whose dimension is equal to the multiplicity of 
Ai + p in A 0 p. Furthermore, projecting highest weight vectors (HW) of weight A i  + p 
contained in V( A ) 0 V( p )  onto the space of simple product vectors of the form e 0 e?, 
where e? is a highest weight vector in V ( p ) ,  sets up a bijection between the space 
spanned by the HW of weight Ai + p (whose dimension is also equal to the multiplicity 
of Ai+p  in A @ p )  and the space V , + ( A ) :  the range of this projection is the space 
V,+ ( A  10 e?. 

In this paper and the two following we pursue some implications of this result for 
defining and computing an explicit solution to the Clebsch-Gordan problem for the 
compact semisimple Lie groups. After setting up the notation in § 2, we recall in § 3 
the definition of the space V,,& ( A  ) in terms of the generators of G, and sketch the proof 
of the result above, which is based on the fact that the product vector e:@e! ,  with 
e: a highest weight vector for V ( a )  and e!? a lowest weight vector for V ( p ) ,  is cyclic 
under G for the representation a 0 p. In 0 4 we show how to define a set of labelled 
Wigner coefficients between highest weight vectors of weight Ai + p and product vectors 
in V,+(A)@e@ and prove that these coefficients are rational polynomial functions of 
the integer components of p. We specify the programming steps necessary to compute 
these coefficients. General Wigner coefficients may be obtained from those defined in 
this paper by application of the group generators, which have known matrix elements. 
In the two following papers, we study the multiplicity problem in detail for the groups 
U(3) and U(4), establishing an approach to multiplicity resolution which will extend 
(albeit with substantial computational effort) to higher U(n) and to the other compact 
semisimple Lie groups; we then pursue the greatly simplified properties of the Wigner 
coefficients we define in the asymptotic limit of large quantum numbers, obtaining 
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results which closely parallel those well known to hold for Elliott’s solution to the 
labelling problem O(3) c U(3). 

2. Notation and terminology 

Fix a compact semisimple Lie group G, let L be its complexified Lie algebra, and let 
U be the universal enveloping algebra of L. Following the notation of Humphreys 
(1972), let H be a Cartan subalgebra of L, and let A = {a1 ,  a 2 , .  . . , a ~ }  be a base for 
the root system of H*. The corresponding fundamental dominant weights 
{ A l ,  A2, . . . , A I }  are defined from the root system via the form ( , ) given by 

(Azy ai) = 2(A,, a,)/(aj, ai) = 6, 

where ( , )  denotes the dual of the Killing form on H. The positive integral linear 
combinations of the fundamental dominant weights form the set A+ of dominant 
integral weights, which is in one-to-one correspondence with the set of irreducible 
representations (IR) of G; we shall use A, p, etc, to denote both highest weights and 
IR. The carrier space of the I R  A will be denoted V ( A ) .  The representation con- 
tragredient to A, carried on the dual space V(A)* ,  will be denoted A*. The weights 
occurring in V ( A )  will be ordered, as above, from lowest to highest with V , ( A )  the 
weight subspace of V ( A )  for the weight A,. The full lattice carries the partial order 
induced by the positive roots: A < p iff p - A is a sum of positive roots. It is convenient 
to fix a standard set of generators. For each positive root a, let h, be the element of 
H satisfying (h,, h )  = a ( h ) ,  V h  E H, and fix xu and yo by the requirements 

[h ,  & I =  a ( h ) x ,  V h E H  

[h ,  Yo1 = a ( h ) Y o  V h E H  

[ x u ,  Y a l =  ha. 

For a = a, E A, write h,, etc, for h,,. The standard set is then {x,, y , ,  h,, i = 1, .  . . , I}. 
We can decompose L as 

L = B @ H @ N  

where B (resp N) is the nilpotent subalgebra generated by the {x,} (resp { y , } ) .  By the 
PBW theorem (Humphreys 1972, p92), U may be factorised as U(B)U(H)U(N) where 
U(B) (resp U(H), U(N))  is the subalgebra of U generated by B (resp H, N). Let S 
be half the sum of the positive roots. 

3. Projective resolution of the Clebsch-Gordan multiplicity 

We begin by recalling some results from Gould and Edwards (1984). Our aim is to 
decompose the tensor product representation V ( A ) O  V ( p )  into irreducible sub- 
representations. We fix attention on the set of irreducible subrepresentations of highest 
weight A,  + p where hi is a weight of V ( A ) .  Any highest weight vector of this weight 
must lie in the space spanned by simple product states of the form e O J  e €  Vk(A) ,  
f E v ( p ) ,  with Ak+pj  = h i + p .  We focus however on the subspace of the space of 
vectors of weight A i  + p spanned by product states of the form e @  e:; this subspace 
may be written V , ( h ) O e Y .  The main result needed from the previous paper is one 
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based on an earlier result of Parthasarathy et a1 (1967). It states that the multiplicity 
of A i + p  in AOp is equal to the dimension of the space Vi,,(A)c V(A), which is 
defined in terms of U as 

The multiplicity of Ai + p in A 0 p is the dimension of the space of highest weight 
vectors in V(A)O V ( p )  of weight A i + +  There is in fact a simple bijection between 
this space and K,+(A): the decomposition of any HWV of weight A i + p  into direct 
product states will always have a term of the form e O e Y ,  with e E K,+(A). Conversely, 
the projection of any product state of the form eC3e.Z with e €  K,,(A) onto the space 
of HWV will always be non-zero, while the same projection from a state e O e z  with e 
an element of the orthocomplement of v,+ ( A  ) will vanish. 

The proof of this result, and specifically the definition of the space V, , (A)  in terms 
of the group generators, is grounded in the fact that all tensor product representations 
of a compact semisimple Lie group are cyclic: the representation V ( a ) O  V ( p )  is 
cyclically generated by the vector e : O e ! .  Just as in the case of an irreducible 
representation (which is trivially cyclically generated from its highest weight vector) 
much information about the structure of the cyclic module may be obtained from a 
knowledge of the enveloping algebra annihilator of the cyclic vector. In the irreducible 
case, the well known result of Verma (1968) tells us that e: is annihilated by the ideal 

As shown in our previous paper, the annihilator of e : O e !  has a similar form, being 

ux!p+G,”J+C uy!u+s.”~’+C U[h, -(. -/3*)(h1)]. 

Projecting e$’”@ e!* onto subrepresentations of V(A, + p)O V ( p ) *  equivalent to A 
always yields an element of V,+(A), while conversely the decomposition into product 
states of vectors in subrepresentations of V(A, + p)O V ( p * )  equivalent to A will yield 
a non-zero component along e$+’’ 0 e!!* for elements of V , + ( A ) ,  and a zero component 
for elements of the orthocomplement of K,+(A). The former projections are inter- 
twining operators for the group action, with the result that elements of V , + ( A )  must 
be anniliated by anything annihilating e$++ 0 e!!*. We have shown in the earlier paper 
that the latter condition is in fact both necessary and sufficient for a vector to be an 
element of V,+ ( A  ). The relationship between these properties of V (  A,  + p )  0 V (  p * )  
and its subrepresentations equivalent to A, and the properties of subrepresentations of 
V(A)O V ( p )  equivalent to A ,  + p  which are the subject of the present discussion, stems 
directly from the natural bijection between V(A, + p)O V ( p * )  and the space of linear 
operators from V ( p )  into V(A, + p ) :  the subrepresentations of V(Az +p)O V ( p * )  
equivalent to A correspond under this bijection to the tensor operators transforming 
according to A. 

The space V,+(A) is vastly simpler than the space of HWV in V(A)@ V ( p )  which 
it labels. The set {xk, yk, h k }  for each kE (1,. . . , I} specifies a Lie subalgebra of L 
isomorphic to sl(2): denote it d(2)k. The I R  of sl(2) are defined by a single highest 
weight integer label. The condition y?k+’e = 0 with mk = (p,  ak) for some vector e of 
known weight A, with kth component Ark simply asserts that the spectral decomposition 
of e under s1(2), contains no component lying in an Sl(2)k submodule with highest 
weight greater than 2mk - Alk. Alternatively we can say that the kth defining condition 
of V , + ( A )  specifies that it is contained within wk, which we define as the ‘cumulative 
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Sl(2)k spectral subspace of V , ( A )  with highest weight 2mk-Alk', i.e. the span of all 
vectors in V , ( A )  which lie in Sl(2)k submodules of highest weight no greater than 
2mk-Alk. V,,,(A) is itself the intersection W, n W,n - * n W,. 

As mk, the kth highest weight component of p, increases, the annihilator ideal of 
e $ + p O e ! *  decreases. The cumulative spectral subspace Wk starts for low values of 
mk at zero, increasing with increasing ?nk (after 2mk - h , k  it reaches the value of the 
lowest Sl(2)k spectral component in V , ( A ) )  until it is the whole of V,(A).  At this stage 
the component mk has no further influence on the multiplicity which remains at its 
maximal value if the values of the other highest weight components of p are held 
fixed. This behaviour gives rise to 'pie-staped' regions defined by the sets of IR p for 
which the multiplicity of A, + p in A O p  for fixed A, is greater than some given value. 
Such regions have been studied in detail for U(3) (Lohe et a1 1977) and will be 
discussed further in the next paper. For the vast majority of representations ,U, the 
multiplicity of A ,  + p  in A Op is either minimal (zero) or maximal (dim V , ( A ) ) .  In the 
latter case any basis of V , ( A )  will serve to label an (in general non-orthogonal) basis 
of the space of HWV of weight A, + p in V (  A )  0 V ( p ) .  However we show in a subsequent 
paper that for large p an orthonormal basis of V , ( A )  gives rise asymptotically to an 
orthonormal resolution of the multiplicity. Additionally it is worth noting that polar 
decomposition of the projection acting between the space V,,,(p) and the space of 
n w  of weight A,  + p may be used to set up a natural unitary correspondence between 
the two spaces. 

4. Computation of Wigner coefficients 

The simplest labelling map from V,,,(A) onto the space of HW of weight A,+p is 
projection. Let P be this projection. P can be taken as the restriction to V,(A)OeY 
of the central projection in V(A)O V ( p )  onto the space spanned by all subrepresenta- 
tions of highest weight A,  + p. There are two well known methods for calculating the 
matrix elements of central projections, which in this case yield the Wigner coefficients 
of the form (e',@ eYle:i++,,), where the notation for basis vectors here indicates that 
{e',li = 1,. . . , n ;  j = 1, .  . . , dim V , ( A ) }  is a basis for V(A) adapted to the weight spaces 
V , ( A )  while for fixed i and varying j is a basis for the space of HW in 
V(A)O V ( p )  obtained by projection from the vectors el,, the range of j being chosen 
to yield a maximal linearly independent set. The first method is integration over the 
group manifold, such as the Hill-Wheeler integrals used in calculating the transforma- 
tion coefficients for the Elliott reduction of the O(3) c U(3) problem (e.g. Moshinsky 
et a1 1975). The alternative is the infinitesimal method of spectral reduction of Casimir 
and/or higher-order enveloping algebra invariants, such as the Gel'fand invariants of 
U(n), O(n) and Sp(2n). For the present application, the infinitesimal method is simpler 
in view of the fact that for a representation generated cyclically from a weight vector 
of weight A,  + p, only the second-order Casimir invariant is needed in order to separate 
the IR of highest weight A, + p  from the other IR (Gould and Edwards 1984). A related 
use of the global projection method appears in Klimyk and Gavrilik (1979). 

It is shown in the earlier paper that the central decomposition of a product state 
e', 0 e$ yields a sum of P( e', 0 e l )  and components lying in IR whose highest weights 
are all strictly greater than A,  + p under the partial order on the weight lattice. The 
character of the Casimir operator C is a function on the set of dominant integral 
weights which is strictly monotonic with respect to that partial order. Hence the central 
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projection for the highest weight A i  + p acting on e;  0 e f ;  is implemented by 

with ,ya(C) the eigenvalue of C in the I R  a; the product is only over highest weights 
of V( A )  0 V( p )  strictly greater than A,  + p. In this expression, each term in the product 
is quadratic in the highest weight labels (m,, m,, . , . . , m,) of p. A simpler expression 
for the action of P on e', 0 e? is obtained by replacing C by the invariant 

A = x  a ,@a '  (with { U , } ,  { U ' }  dual bases of L) 

(I = identity operator) = C( A O p )  - C( A )  0 Z - I O  C( p )  

whose eigenvalues are linear functions of (m,, m2, . . . . , m,). The separation property 
is not lost when C is replaced by A, whose eigenvalues are given explicitly by 

Xo+,, ( A )  = X v + ,  (C) - X A  (C) - X r  (C) 

= (U+ p, CT+ p + 8 )  - ( A ,  A + 8 )  - ( p ,  p + 8) 

= (2p  + CT + 28, CT) - ( A ,  A + 28). 

We shall now show that the matrix elements ( e ' ,Oef ; lP le ' ,Oe?)  have the desirable 
property of being ratios of polynomial functions in (m,, m,, . . . , m,) of degree no 
larger than the number of weights in V(A) strictly greater than Al. In the process 
program steps for the explicit computation of these matrix elements are exhibited. It 
is worth noting that the complete behaviour of the polynomial numerator and 
denominator functions is determined by their behaviour on the region of the p lattice 
corresponding to maximal multiplicity of A,  + p in A 0 p. In this region the complexities 
of the intermediate multiplicity decompositions (neither minimal nor maximal for fixed 
A , )  are avoided. This is seen from the following results (Kostant 1975, propositions 
4.1 and 4.2). Define a highest weight A to be subordinate to a highest weight p if, for 
every weight A ,  in V(A), the I R  A,+p occurs in A 0 p  with maximal multiplicity 
dim V , ( A ) .  Also let So denote the partial order: p GOA iff A - p E A+, the lattice of 
dominant integral weights. Then 

(a) for any highest weight A there is a highest weight po such that A is subordinate 
to p for every p 2 ope; 

(b) a polynomial function f on the weight lattice A vanishes identically iff it 
vanishes on all p not less than some fixed highest weight pa. 

To see that the matrix elements (e' ,@e?lf(A)Ie',@e$) are polynomials in 
(m,, m,, . . . , ml) for any polynomial f in A, note that 

( e ' , O e f ; l A " l e ' k O e ~ ) =  ( e ~ ~ u l l u 1 2 . .  . ulml eLk)(e: lu ' la5 . .  . u'mle?). 
11 Im 

The p dependence of this expression is entirely in the factors ( e f ; l a ' l a $ . .  . a'mley), i.e. 
a diagonal matrix element between highest weight states. The only non-zero terms in 
the sum over i , ,  . . . , i, thus arise from products ~ ' 1 ~ 5 . .  . a'm that do not shift the 
weight. These are all elements of the algebra C(H), the centraliser in U of the Cartan 
subalgebra H. The whole expression (insofar as we are interested in its dependence 
on p )  is therefore a linear combination of diagonal matrix elements of members of 
C(H) taken between highest weight states of weight p. Any element of C(H) is the 
sum of a polynomial in H and something which annihilates e?. (This follows by 
looking at monomials in C(H) and reordering terms using the commutation relations 
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as in the proof of the PBW theorem.) A computer program to evaluate the expression 
would benefit by exploiting the fact that it has the structure of a linear combination 
of products of a factor independent of p and a polynomial function of p. 

5. Conclusion 

We have shown how the task of resolving the multiplicity in I R  of weight Ai + p in the 
tensor product representation A 0 p and then calculating the Wigner coefficients 
involving highest weight states of the resolved I R  can be reduced to a study of the 
behaviour of s1(2), subalgebras of L on the weight subspace V , ( A ) c  V(A). The latter 
problem is a vastly simpler one than the former, and we find that it gives rise to 
comparatively simple rational function expressions for the highest weight Wigner 
coefficients. Future work will be devoted to a detailed study of these polynomial 
functions in specific cases; an evaluation of the zeros of these polynomials and their 
relation to the complex structure of the Clebsch-Gordan problem in the intermediate 
multiplicity region will be of particular interest. 
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